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Abstract
The proportional odds (PO) model is one of the most commonly used models for
regression analysis of failure time data in survival analysis. It assumes that the odds of
the failure is proportional to the baseline odds at any point in time given the covariate.
The model focus on the situation that the ratio of the hazards converges to unity as
time goes to infinity, while the proportional hazards (PH) model has a constant ratio
of hazards over time. In the paper, we consider a general type of failure time data,
case K interval-censored data, that include case I or case I I interval-censored data
as special cases. We propose a PO model-based unified penalized variable selection
procedure that involves minimizing a negative sieve log-likelihood function plus a
broken adaptive ridge penalty, with the initial values obtained from the ridge regression
estimator. The proposed approach allows dependent censoring, which occurs quite
often and could lead to biased or misleading estimates without considering it. We
show that the proposed selection method has oracle properties and the estimator is
semiparametrically efficient. The numerical studies suggest that the proposed approach
works well for practical situations. In addition, themethod is applied to anADNI study
that motivates this investigation.
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1 Introduction

Interval-censored failure time data often occur in follow-up studies and clinical trials.
A general type for interval-censored data is the case K interval-censored data (Wang
et al. 2016, 2018, 2020a, b, 2023; Zhao et al. 2021), for which there exists a sequence
of observation points for each subject and the failure time of interest is known only to
belong to a window or an interval. It includes case I or case I I interval-censored data
as special cases. For case I interval-censored data(or current status data), each subject
is observed only once and the observed data have the monitoring time and the current
status of the event of interest(occurred or not) (Huang 1996; Ma et al. 2015; Hu et al.
2017). Another type is case I I interval-censored data meaning that there exist two
observation points for each subject, the observed information is described by the left
and right end points of intervals, respectively. In addition, the right-censored data arise
when the right end points of an interval is infinite (Kalbfleisch and Prentice 2002).

Many methods and models have been proposed for the censored data in the lit-
erature (Sun 2006). The PH model and the PO model are two popular frameworks
in investigating the association between risk factors and disease occurrence or death
(Cox 1972; Rossini and Tsiatis 1996; Huang and Rossini 1997; Shen 1998; Yang and
Prentice 1999; Wang andWang 2021). The PHmodel assumes a constant ratio of haz-
ards over time, however, this assumption may not be appropriate in real applications.
As an important alternative model, the PO model specifies that the odds of the failure
given any covariate is proportional to the baseline odds at any time point. And the
regression parameters in the PO model have a nice interpretation in terms of the log
odds ratio of the failure. In addition, the PO model is considered more appropriate
than the PH model when there exists an effective cure or the morbidity rates converge
with time (Murphy et al. 1997).

A topic of widespread interest is variable selection and numerous methods have
been developed in statistical analysis. In particular, for linear models with outcomes
that are not censored, certain conventional methods are employed like backward selec-
tion, forward selection, and best subset selection. Lately, there has been productive
investigation focused on the penalized estimation method which is that maximizes
an objective function with a penalty function. These methods consist of the least
absolute shrinkage and selection operator(LASSO) procedure (Tibshirani 1996), the
smoothly clipped absolute deviation(SCAD) procedure (Fan and Li 2001), the adap-
tive LASSO(ALASSO) procedure (Zou 2006), the smooth integration of counting and
absolute deviation(SICA) procedure (Lv and Fan 2009), the seamless-L0(SELO) pro-
cedure(Dicke et al. 2013), and the broken adaptive ridge (BAR) regression (Dai et al.
2018; Zhao et al. 2020; Sun et al. 2022a, b). A number of authors have investigated
the variable selection for the right-censored failure time data, and especially, Tibshi-
rani (1997), Fan and Li (2002) and Zhang and Lu (2007) generalized the LASSO,
SCAD, and ALASSO penalty-based procedures, respectively, to the Cox proportional
hazards model situation. Furthermore, Lu and Zhang (2007) studied the proportional
odds model for the right-censored data by utilizing a penalized marginal likelihood
based on ranks.

For the variable selection based on the interval-censored data, many procedures
have been investigated (Scolas et al. 2016; Wu and Cook 2015; Zhao et al. 2020; Li et
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Fig. 1 Estimate of the log odds on AD conversion by any given time for participants with different PTGEN-
DER (left) and FAQ (right)

al. 2021; Sun et al. 2022a, b; Du and Sun 2022). Specifically, two parametric proce-
dures were developed in Scolas et al. (2016) and Wu and Cook (2015), respectively.
Zhao et al. (2020) considered a semiparametric procedure and proposed the broken
adaptive ridge (BAR) regression on the proportional hazards model. And Sun et al.
(2022a, b) developed a variable selection technique for multivariate interval-censored
data. Du and Sun (2022) reviewed variable selection procedures for noninformative
or independent interval-censored failure time data. One drawback for majority of the
methods mentioned above is that they all assumed that the failure time and the obser-
vation process are independent. Nevertheless, the assumption may not be true in many
real situations. Corresponding to this, Du et al. (2021) developed an approach to vari-
able selection for informative interval-censored data, and proposed a two-step method
relying on the proportional hazards model and assuming the Poisson process for the
observation process. However, note that the proportional hazards model may not be an
appropriate choice when homogeneity between different groups increases over time
and it is more preferable to use the proportional odds model to analyze the data.

A motivating example in this article is an Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) study which can be found on the website http://adni.loni.usc.edu. This
research includes medical, imaging measures, biomarkers and others covariates. An
interesting aspect in this investigation is tomonitor the progress of participants and also
to identify the covariates or risk factors for AD conversion time. To establish a suitable
model, we draw the empirical plot of the log odds function for participants based on
the variables PTGENDER (Male and Female) and FAQ (high and low), respectively.
Figure1 presents the nonparametric maximum likelihood estimates (NPMLE). Note
that the vertical difference between the two curves remains relatively constant which
suggests that the proportional odds model maybe reasonable. Moreover, the initial
visit or censoring mechanism may be related to the time of AD conversion. Hence, in
this article, we will introduce a method for selecting variables using the proportional
odds model for informatively case K interval-censored failure time data. This method
does not rely on the assumption of a Poisson distribution for the observation process.

The remainder of the paper is organized as follows. We begin with introducing
data structure and model assumptions in Sect. 2. In Sect. 3, we propose an sieve penal-
ized variable selection procedure that combines the two-step approach and the sieve
method. The number of covariates is allowed to diverge with the sample size and a
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recursive algorithm for the determination of the BAR estimators is developed. Results
obtained from an extensive simulation study are presented in Sect. 4 and indicate that
the proposed method seems to work well for practical situations. In Sect. 5, the pro-
posed procedure is employed to a set of real data and Sect. 6 contains some discussion
and concluding remarks.

2 Data andmodels

Consider a failure time study that consists of n independent subjects. For each subject i ,
let Ti denote the failure time of interest and suppose that there exists a p-dimensional
vector of covariates denoted by xi = (x1i , x2i , . . . , x pi ), i = 1, 2, . . . , n. In the
practical applications, the failure time Ti may not be observed exactly instead that we
obtain a sequence of observation time points denoted by Ui0 = 0 < Ui1 < Ui2 <

. . . < Ui Ki < ∞ and the indicator δi j = I (Ui j−1 < Ti ≤ Ui j ), i = 1, . . . , n, j =
1, . . . , Ki , where Ki denotes the total number of observation points. Then, we have a
point process ˜Ni (t) = ∑Ki

j=1 I (Ui j ≤ t), which characterizes the observation process
on subject i and jumps only at the observation times. Let τi denote the follow-up time
which is independent of failure time Ti on subject i , we have Ki = ˜Ni (τi ) and one
observes case K interval-censored data which have the form

O =
{

Oi = (xi , τi , Ui j , δi j , Ki , j = 1, . . . , Ki ), i = 1, 2, . . . , n
}

.

As mentioned above, it is apparent that case I interval-censored data or current
status data occur if observation points Ki = 1 for i = 1, . . . , n. That is, each subject
is observed only once and the only observed information for the event of interest
is whether the event has occurred no later than the observation time. If observation
points Ki = 2, the data are usually referred to case I I interval-censored data. It is
meaning that each subject is observed twice and the observed information is described
by two variables that represent the left and right end points of an interval (Sun 2006),
respectively. In addition, they reduce to the right-censored data, if the failure time
Ti > Ui Ki or

∑Ki
j=1 δi j = 0 (Kalbfleisch and Prentice 2002).

Note that there exist two processes in the informatively interval-censored data,
which are the failure time process and the observation process. In many situations, the
twoprocessesmaybe correlated.A typical example of the informative censoring canbe
observed in health or medical follow-up studies, such as clinical trials where patients
may pay less or more visits depending on their conditions than the pre-specified
schedule. To describe the covariate effects and the relationship between the failure
time of interest and the censoring mechanism, assuming that there exists a latent
variable bi and given the covariates xi and bi , the variable Ti follows the proportional
odds frailty model

F(t | xi , bi )

1 − F(t | xi , bi )
= �0(t) exp

(

x�
i βa + biβb

)

, (1)
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where �0(t) = F0(t)
1−F0(t)

denotes a completely unknown baseline odds function, F0(t)
is the baseline cumulative distribution function, and βa , βb are unknown regression
parameters. The survival function corresponding to the proposed model is

S(t | xi , bi ) =
[

1 + �0(t) exp
(

x�
i βa + biβb

)]−1
.

For the observation process, it will be assumed that given xi and bi , ˜Ni (t) has the
rate function

E(d ˜Ni (t) | xi , bi ) = λ0h(t) exp(x�
i γ + bi )dt , (2)

where λ0h(t) is a completely unknown continuous baseline rate function and γ is a
vector of regression parameters as βa . Define�0 h(t) = ∫ t

0 λ0 h(s)ds, and assume that
�0 h(τ0) = 1,where τ0 denotes the longest follow-up time.Also it will be assumed that
given xi and bi , Ti and ˜Ni (t) are conditional independent. Note that models (1) and (2)
with bi = 0 have been commonly used in the analysis of failure time data (Klein and
Moeschberger 2003) and event history data (Cook and Lawless 2007), respectively.
It is apparent that the parameter βb represents the extent of the association between
the failure time and the observation process. The positive value of βb represents that
the observation process and the failure time process are positively correlated, while
the negative value of βb indicates the negative association between them. In addition,
if βb = 0, these processes are independent. Moreover, we simply suppose that the
observation process has the rate function, rather than a nonhomogeneous Poisson
process, and it is much more flexible than the others (Wang et al. 2016, 2018).

For inference, define β = (β�
a , βb)

� and θ = (β�,�0)
�. Under the assumptions

above, if the distribution of the bi ’s was known, one can write the likelihood function
as

L(β, �0 | bi ) =
n
∏

i=1

Ki
∏

j=1

⎡

⎣

[

S(Ui, j−1 | xi , bi ) − S(Ui j | xi , bi )
]δi j

[

S(Ui Ki | xi , bi )
]

1−
n
∑

j=1
δi j

⎤

⎦.

(3)

Note that the conditional likelihood mentioned above includes latent frailty variable
bi ’s, the baseline odds function �0(t), and regression parameter β. If the distribution
of the latent frailty variable bi ’s was known, an EM algorithm can be employed to
maximize the log-likelihood function to estimate the parameters of interest (Wang
et al. 2020a, b). However, it is easy to find that the distribution of the bi ’s may be
unknown in many real applications. To solve the problem, we first propose to estimate
the bi ’s and then conduct the sieve penalized variable selection in the following section.

3 Sieve penalized variable selection procedure

Now we will focus on the likelihood-based borrow-strength approach for a latent
variable in the models above. It should be noted that the latent effects bi ’s are not
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known in (3) and therefore, a natural approach is to estimate latent effects bi ’s by
employing a borrow-strength estimation procedure (Wang et al. 2018; Zhao et al. 2021)
and then directly maximize the working likelihood function to estimate the unknown
parameters �0(t), and β by substituting in the estimator of bi into likelihood function
(3).

3.1 Borrow-strength Sieve approach

Note that the shared frailty variables bi ’s are not observed and their distribution is
unknown. To address this, we propose the two-step method, as described by Huang
andWang (2004) andZhao et al. (2021). In the subsequent sections,wewill first outline
the estimation and inference process for model (2), following the similar methodology
employed by Huang and Wang (2004) and Zhao et al. (2021). Specifically, define
Ni (t) = ˜Ni (t ∧ τi ) for the i-th subject, where t ∧ τi = min(t, τi ). Then we obtain
that

Ni (t) =
∫ t∧τi

0
d ˜Ni (u) =

∫ t

0
I (τi ≥ u)d ˜Ni (u).

Under the assumptions of the observation process, we derive that

d�0h(t) = d[E Ni (t)]
E(exp(x�

i γ + bi )I (τi ≥ t))

by the conditional expectation of Ni (t).
According to the estimation process and results in Zhao et al. (2021), we have

log�0h(τ0) − log�0h(t) =
∫ τ0

t

d[E Ni (s)]
E(Ni (s)I (τi ≥ s))

, (4)

which does not depend on frailty variable bi and covariates xi . Combining the assump-
tion �0h(τ0) = 1, the straightforward calculation yields

�0h(t) ≈
∏

t≤s≤τi

[

1 − d[E Ni (s)]
E[Ni (s)I (τi ≥ s)]

]

.

It is thus natural to suggest that one can estimate �0h(t) by

̂�0h(t) =
∏

s(l)>t

(

1 − d(l)

R(l)

)

. (5)

In the above, the s(l)’s are the ordered and distinct values of observation times {Ui j },
d(l) is the number of the observation times equal to s(l), and R(l) the total number of
observation events with observation times and observation terminating time satisfying
Ui j ≤ s(l) ≤ τi .
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To achieve the regression estimation of parameter γ , based on the similar idea in
Huang and Wang (2004) and Zhao et al. (2021), we employ the following weighted
estimating equations

n
∑

i=1

wi x̃i

(

Kî�
−1
0h (τi ) − γ0 exp(x�

i γ )
)

= 0 , (6)

where x̃�
i = (1, x�

i ), γ0 = E(ebi ), and the wi ’s are some weights that could depend
on the xi ’s, τi ’s and �0h (Huang and Wang 2004). The estimators of γ and γ0, γ̂ and
γ̂0 can be obtained by solving the estimation equations (6) in the above. Then, the
estimation of bi is given by

b̂i = log
{ Ki

̂�0h(τi ) exp(x�
i γ̂ )

}

.

For the inference about model (1), as previously stated, given the bi s, model (1)
becomes the usual proportional odds model. Therefore, it is natural to replace bi by
the estimator b̂i and the likelihood function (3) is rewritten by

L(β,�0 | b̂i )

=
n
∏

i=1

Ki
∏

j=1

⎡

⎣

(

S(Ui, j−1 | xi , b̂i ) − S(Ui j | xi , b̂i )
)δi j

(

S(Ui Ki | xi , b̂i )
)1−

n
∑

i=1
δi j

⎤

⎦. (7)

Nowwe focus on the estimator θ in general and it is apparent that a natural approach
would be tomaximize the log-likelihood function l(β,�0 | b̂i ) = log(L(β,�0 | b̂i )).
However, it is obvious that the computation becomes challenging due to the presence of
infinite-dimensional parameters �0. To address this issue and maintain the modeling
flexibility, we employ the Bernstein polynomials method to approximate�0(t) (Wang
and Ghosh 2012). Specifically, let � denote the parameter space of θ , and define the
sieve space

�n =
{

θn = (β�,�n)�
}

= B ⊗ 	n ,

where

B =
{

β ∈ Rp+1, ‖ β ‖≤ M
}

,

	n =
{

�n(t) =
m
∑

l=0

αl Bl(t, m, a1, a2) :
∑

0≤l≤m

| αl |≤ Mn, 0 ≤ α0 ≤ α1 ≤ . . . ≤ αm

}

.

M is a constant, Mn = o(na0), 0 < a0 < 1/2. α = (α0, α1, . . . , αm)� is the unknown
sieve parameter vector to be estimated and

Bl(t, m, a1, a2) = Cl
m

( t − a1
a2 − a1

)l(

1 − t − a1
a2 − a1

)m−l
,

123



B. Zhao et al.

where m denotes the degree of the Bernstein polynomials which is usually taken to
be m = O(nν) for some 0 < ν < 1/2. And 0 ≤ a1 < a2 < ∞ with (a1, a2) usually
taken as the range of observed data.

Given the observation points Ui j , b̂i and �n(t), the working likelihood function
has the following form

Ln(β,α)

=
n
∏

i=1

Ki
∏

j=1

⎡

⎣

(

Sn(Ui, j−1 | xi , b̂i ) − Sn(Ui j | xi , b̂i )
)δi j

(

Sn(Ui Ki | xi , b̂i )
)1−

n
∑

i=1
δi j

⎤

⎦,

where Sn(t | xi , b̂i ) = [1 + �n(t) exp(x�
i βa + b̂iβb)]−1. If someone is solely

concerned with approximating β, it is natural to concentrate on the sieve profile
log-likelihood function l p(β) = max

α
ln(β,α), where ln(β,α) = log Ln(β,α). In

the following, we will propose a penalized or regularized procedure for simultaneous
estimation and covariate selection based on l p(β).

3.2 Penalized variable selection procedure

For the simultaneous estimation and covariate selection, we will consider a broken
adaptive ridge (BAR) penalized operator proposed by Zhao et al. (2020), which com-
bines the strengths of the quadratic regularization and the adaptive weighted bridge
shrinkage in interval-censored data. Specifically, define β̌ = (β̌1, . . . , β̌p−1, β̌p)

�
denotes a consistent estimator of β, the corresponding penalized objective function is

l pp(β | β̌) = −2l p(β) +
p

∑

s=1

P(| βs |; λn) = −2l p(β) + λn

p
∑

s=1

β2
s

β̌2
s

, (8)

where parameter λn denotes a non-negative penalization tuning parameter. As men-
tioned by Dai et al. (2018), Zhao et al. (2020) and Sun et al. (2022a, b), one main

advantage behind the proposed procedure above is that β2
s

β̌2
s
is expected to converge to

I (| βs |�= 0) in probability as n goes to infinity if given the consistency of β̌.
To obtain the broken adaptive ridge estimates, we need to minimize objective func-

tion l pp(β | β̌) in (7). Specifically, for given an initial value β̂
(0)

, which is a consistent

estimator ofβ, one canupdate β̂
(k)

iteratively by the following reweighed L2-penalized
proportional odds regression estimator

β̂
(k) = argmin

β

{

−2l p(β) + λn

p
∑

s=1

β2
s

(β̂
(k−1)
s )2

}

, (9)

In the algorithm, according to the ideas of Wang and Leng (2007) and Zhao et al.
(2020), the log-likelihood function l p(β) can be approximated as an iterative least
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square procedure by theNewton–Raphson update. Therefore, by a second-order Taylor
expansion, minimizing (7) is asymptotically equivalent to minimizing

‖ y − Zβ‖2 + λn

p
∑

s=1

β2
s

(β̂
(k−1)
s )2

. (10)

In the above, y = (Z�)−1[l̇n(β | α) − l̈n(β | α)β] and matrix Z be the Cholesky
decomposition of −l̈n(β | α) or Z�Z = −l̈n(β | α), where l̇n(β | α) =
∂ln(β,α)

∂β
, l̈n(β | α) = ∂l2n (β,α)

∂β∂β� represent the first and second partial derivatives of

ln(β,α) about β, respectively. In the following section, we can obtain the broken
adaptive ridge regression estimator by minimizing objective function (9) for a fixed
λn by the subsequent iterative algorithm. The specific iterative algorithm is outlined
below.

• Step 1. Set k = 0 and choose an initial estimator β̂
(0) = (β̂

(0)�
, α̂

(0)�
)�. One can

take α̂
(0)� = 0 and take the ridge regression estimator

β̂
(0) = argmin

β

{

−2l p(β) + n

p
∑

s=1

β2
s

}

,

where n is a non-negative tuning parameter.
• Step 2. At the (k + 1)-th iteration, for the current estimate compute α̂

(k), com-
pute �n = l̈n(β(k) | α(k)), D(β(k)) = diag(β

(k)
1 , . . . , β

(k)
p−1, β

(k)
p , 0), and

ξn = l̇n(β
(k) | α(k)) − l̈n(β(k) | α(k))β(k). And obtain updated estimates

β̂
(k+1) =

{

�n + 2λn D(β̂
(k)

)
}

ξn .

• Step 3. At the (k+1)th iteration, for the current estimate β̂
(k+1)

, obtain the updated

estimate α̂
(k+1) by solving equation ∂ln(β̂

(k+1)
,α)

∂α
= 0.

• Step 4. Repeat Steps 2–3 until the convergence is achieved.

Note that in the iterative process above, one needs the Cholesky decomposition
of −l̈n(β | α) when calculating �n and ξn . And on the covariate selection, let the
estimates of the components of β as zero if the estimate values are less than a pre-
specified threshold. By followingWang et al. (2007), we used the threshold of 10−6. To
implement the algorithm above, one needs to select two tuning parameters n and λn .
An optimal tuning parameter can result in a parsimonious model with good prediction
performance.Wang et al. (2009) has showed that Bayesian information criterion (BIC)
is consistent in model selection, and we employ the BIC-type criterion to choose the
tuning parameter. Also as pointed out by others and shown in the numerical study, the
BAR-based approach is not sensitive to n and thus it can be taken to be a constant(e.g.,
50 or 100). For a givenλn , we can obtainBARestimators β̂λn

and α̂λn and theBIC-type
criterion is defined by
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B I Cλn = −2ln(β̂λn
, α̂λn ) + log(n)d fλn ,

where d fλn is the number of nonzero coefficients in β̂λn
.

In the following, we establish the asymptotic properties of the proposed BAR esti-
mator β̂

∗
and denote β0 = (β0,1, β0,2, . . . , β0,p, β0,p+1)

� as the true of β. Without
losing generality, assume parameter β0 = (β(01),β(02)), where β(01) consists of all
(q + 1)(q << p) nonzero components. Corresponding to this, we will divide BAR

estimator β̂
∗ = (β̂

∗�
1 , β̂

∗�
2 )� in some ways. The following Theorem describes the

oracle property of BAR estimator with limits being n → ∞ and the proof was given
in the Appendix.

Theorem 1 Suppose that the regularity conditions (C1)–(C8) described in the
Appendix hold. Then as n → ∞ and with probability tending to 1, the BAR esti-
mator β̂

∗ = (β̂
∗
1, β̂

∗
2) exists and has the following properties:

(I) β̂
∗
2 = 0, with probability tending to 1.

(II) β̂
∗
1 is the unique fixed-point of the equation β1 = (�

(1)
n + 2λn D1(β1))

−1ξ (1)
n .

Here D1(β1) = diag(β−2
1 , β−2

2 , . . . , β−2
q , 0), �

(1)
n denotes the (q + 1) × (q + 1)

leading submatrix of �n and ξ (1)
n denotes the vector that consists of the first q + 1

component of ξn.

(III)
√

n(β̂
∗
1−β(01)) converges in distribution to a multivariate normal distribution

Nq+1(0, �), where the variance-covariance matrix � is defined in the Appendix.

4 Simulation study

In this section, to assess the performance of the finite sample of the penalized variable
selection procedure, we present some results obtained from an extensive simulation
study. In the study, we first generated the covariates xi ’s from the multivariate normal
distribution with mean zero, variance one, and the correlation between x j and xk

being ρ| j−k| with ρ = 0.2 or ρ = 0.5, j, k = 1, . . . , p. The latent variables bi ’s were
generated from the normal distribution with mean 0 and variance 1. The failure time of
interest was generated from model (1) with �0(t) = t2 or �0(t) = log(t + 1) + t1.5.
For the generation of the observed data, we first generated the the follow-up time τi ’s
from the uniform distribution over the interval [3, 4] and the number of observation
times Ki for subject i based on the Poisson distribution with the mean function

�ih(τi | xi , bi ) = λ0h(t) τi exp(x�
i γ + bi ) ,

where λ0 h(t) = 1/4 and γ = (0.1, . . . , 0.1)
︸ ︷︷ ︸

p

. For the censoring intervals, we took

Ui1, . . . , Ui Ki to be the order statistics of a random sample of size Ki from the uniform
distribution over (0, τi ), i = 1, 2, . . . , n. The simulation results given below are based
on sample size n = 300 or 500 with 100 replications.

Table 1 presents the results obtained on the covariate selection with p = 10,q = 3
and β0 = (β�

a , βb)
�, βa = (0.6, 0.6, 0, 0, 0, 0, 0, 0, 0.6)�, βb = 0.2. The results
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include the averaged number of non-zero estimates of the parameters whose true
values are not zero (TP), and the averaged number of non-zero estimates of parameters
whose true values are zero (FP), the median (MMSE) of the mean weighted squared
errors (MSE), and the standard deviation (SD) of the MSE. And define MSE to be
(β̂

∗
a − βa)�E(x�x)(β̂

∗
a − βa), where β̂

∗
a denote the BAR estimator of βa . It is easy

to see that TP and FP provide the estimates of the true and false positive probabilities,
respectively. In addition, we considered other penalty functions (LASSO, ALASSO,
SCAD, SICA, SELO or MCP) and for the results, we took m, the degree of Bernstein
polynomials, to be 3 and used BIC criterion to select the tuning parameter λn . From
Table 1, one can see that the proposed procedure seems to perform well no matter
which penalty function was used, especially in terms of TP which measuring the true
positive selection. As expected, the proposed BAR approach presents the smallest
MMSE and FP in all methods considered. Also the proposed approach generally
yields the largest TP among all except the procedure based on the LASSO penalty. In
addition, the performance does not seem to depend on the cumulative baseline hazard
function for all methods. The results given in Table 2 were obtained in the similar
set-ups as Table 1 except that p = 30 and βa = (0.6, 0.6, 0, . . . , 0

︸ ︷︷ ︸

p−3

, 0.6)�, βb = 0.2.

The covariate selection performs similar to those shown in Table 1 and indicates that
the estimation and variable selection of the proposed method seems to be robust for
number of variables.

To see the performance of the proposed approach for different observation process,
we repeated the set-ups in Table 1 but generated the number of observation times
Ki from the mixed-Poisson process. Specifically, we first generated a random sample
{ω1, ω2, . . . , ωn} from {−0.25, 0, 0.25} with P(ωi = −0.25) = P(ωi = 0.25) =
0.25 and P(ωi = 0) = 0.5. For each i , givenωi , bi and xi , the Ki were then generated
from the Poisson process with the mean function

�ih(τi | xi , bi ) = (1 − ωi )λ0h(t) τi exp(x�
i γ + bi ) .

The results on variable selection of the proposed method are presented in Table 3,
and indicate that the proposed variable selection procedure seems to work well for the
situations considered.

Note that in the above variable selection procedure, another interest is the perfor-
mance of the proposed approach for the number of different non-zero variables. We
considered the number of two different non-zero variables, namely, q = 5, βa =
(0.6, 0.6, 0.6, 0, . . . , 0

︸ ︷︷ ︸

p−5

, 0.6, 0.6)� and q = 8, βa = (0.6, 0.6, 0.6, 0.6, 0, . . . , 0
︸ ︷︷ ︸

p−8

,

0.6, 0.6, 0.6, 0.6)�, under the setting of ρ = 0.5, �0(t) = t2 and n = 500. These
results will be summarized in Table 4. It is apparent that they all gave similar con-
clusions to those given by Tables 1-3. Morever, the estimation and variable selection
of the proposed method also seems to be robust for the number of different non-zero
variables.

In addition, to investigate the sensitivity of the proposed method for latent vari-
ables bi and covariates xi , we considered that the latent variables b∗

i = exp(bi )
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Table 1 Results on covariate selection with p = 10 based on nonhomogeneous Poisson process

Penalty TP FP MMSE SD TP FP MMSE SD
n = 300 n = 500

�0(t) = log(t + 1) + t1.5

ρ = 0.2 BAR 2.97 0.17 0.048 0.085 3.00 0.20 0.038 0.043

LASSO 2.95 1.68 0.170 0.193 3.00 1.95 0.111 0.093

ALASSO 2.95 0.60 0.110 0.144 3.00 0.39 0.065 0.074

SCAD 2.93 0.14 0.039 0.108 3.00 0.09 0.029 0.038

SICA 2.96 0.14 0.044 0.094 3.00 0.09 0.029 0.038

SELO 2.97 0.14 0.045 0.090 3.00 0.10 0.029 0.041

MCP 2.96 0.20 0.043 0.104 3.00 0.10 0.029 0.042

ρ = 0.5 BAR 2.92 0.17 0.060 0.092 3.00 0.18 0.041 0.048

LASSO 2.98 1.68 0.181 0.135 3.00 2.17 0.121 0.081

ALASSO 2.93 0.50 0.144 0.135 3.00 0.52 0.085 0.076

SCAD 2.82 0.17 0.061 0.121 2.98 0.10 0.036 0.049

SICA 2.82 0.10 0.059 0.113 2.97 0.10 0.036 0.054

SELO 2.84 0.11 0.059 0.109 2.97 0.10 0.036 0.054

MCP 2.85 0.16 0.056 0.109 2.97 0.11 0.037 0.056

�0(t) = t2

ρ = 0.2 BAR 2.97 0.22 0.058 0.083 3.00 0.17 0.033 0.036

LASSO 2.88 1.45 0.187 0.213 3.00 1.38 0.126 0.091

ALASSO 2.97 0.55 0.122 0.141 3.00 0.34 0.058 0.058

SCAD 2.90 0.12 0.050 0.119 3.00 0.07 0.023 0.036

SICA 2.88 0.13 0.052 0.127 3.00 0.06 0.024 0.035

SELO 2.88 0.14 0.054 0.127 3.00 0.06 0.024 0.035

MCP 2.91 0.20 0.063 0.115 3.00 0.06 0.023 0.035

ρ = 0.5 BAR 2.95 0.23 0.049 0.082 3.00 0.17 0.030 0.036

LASSO 2.97 1.51 0.180 0.183 3.00 1.43 0.103 0.084

ALASSO 2.91 0.45 0.147 0.189 3.00 0.30 0.068 0.060

SCAD 2.76 0.17 0.048 0.253 3.00 0.08 0.025 0.036

SICA 2.85 0.12 0.044 0.121 3.00 0.06 0.026 0.035

SELO 2.87 0.14 0.044 0.118 3.00 0.07 0.027 0.037

MCP 2.82 0.16 0.048 0.182 3.00 0.09 0.027 0.039

were generated from �(2, 1/2), where �(ν1, ν2) stands for the gamma distribu-
tion with shape parameter ν1 and rate parameter ν2, and xi = (xi1, xi2, . . . , xip)

�,
where xi1, xi2, . . . , xip are independently generated from the uniformdistribution over
(−3, 3) with p = 10, n = 300 and �0(t) = t2. Table 5 summarizes the estimation
results based on 100 replications. The parameter estimates perform similarly to those
shown in Tables 1 and 2, indicating that the proposed method is robust to the different
distribution of the latent variables and covariates.
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Table 2 Results on covariate selection with p = 30 based on nonhomogeneous Poisson process

Penalty TP FP MMSE SD TP FP MMSE SD
n = 300 n = 500

�0(t) = log(t + 1) + t1.5

ρ = 0.2 BAR 2.97 0.39 0.081 0.098 3.00 0.28 0.061 0.052

LASSO 2.87 1.51 0.432 0.261 3.00 1.49 0.285 0.139

ALASSO 2.90 0.89 0.193 0.224 3.00 0.66 0.098 0.089

SCAD 2.97 0.29 0.060 0.101 3.00 0.17 0.028 0.045

SICA 2.95 0.32 0.067 0.109 3.00 0.20 0.029 0.046

SELO 2.95 0.31 0.069 0.105 3.00 0.21 0.029 0.047

MCP 2.95 0.37 0.063 0.108 3.00 0.20 0.028 0.048

ρ = 0.5 BAR 2.94 0.49 0.083 0.158 3.00 0.50 0.057 0.055

LASSO 2.84 1.77 0.409 0.306 3.00 2.31 0.253 0.144

ALASSO 2.85 0.94 0.207 0.244 3.00 0.95 0.123 0.095

SCAD 2.86 0.24 0.054 0.175 3.00 0.12 0.027 0.046

SICA 2.88 0.21 0.053 0.171 3.00 0.22 0.032 0.055

SELO 2.87 0.32 0.065 0.175 3.00 0.23 0.034 0.052

MCP 2.82 0.27 0.061 0.184 3.00 0.18 0.030 0.052

�0(t) = t2

ρ = 0.2 BAR 2.95 0.57 0.086 0.129 3.00 0.47 0.063 0.061

LASSO 2.77 1.66 0.422 0.276 3.00 1.72 0.244 0.123

ALASSO 2.89 0.98 0.197 0.198 3.00 0.69 0.096 0.076

SCAD 2.66 0.22 0.084 0.263 3.00 0.20 0.027 0.056

SICA 2.83 0.32 0.068 0.181 3.00 0.27 0.032 0.061

SELO 2.83 0.36 0.071 0.187 3.00 0.25 0.034 0.061

MCP 2.85 0.53 0.097 0.187 3.00 0.28 0.028 0.067

ρ = 0.5 BAR 2.95 0.58 0.086 0.129 3.00 0.49 0.057 0.059

LASSO 2.94 1.80 0.347 0.228 3.00 1.99 0.217 0.137

ALASSO 2.88 1.03 0.184 0.190 2.98 0.73 0.110 0.127

SCAD 2.81 0.29 0.051 0.162 2.99 0.15 0.030 0.060

SICA 2.85 0.35 0.057 0.154 3.00 0.25 0.035 0.057

SELO 2.85 0.45 0.064 0.158 3.00 0.26 0.037 0.054

MCP 2.85 0.44 0.063 0.174 2.99 0.28 0.037 0.067

5 An application

Now we apply the proposed methodology to a set of informatively case K interval-
censored data arising from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu). The ADNI study is an ongoing, prospective, lon-
gitudinal multicenter study designed to investigate clinical, imaging, genetic and
biochemical biomarkers for early detecting of the Alzheimer’s Disease (AD) and
tracking its progression. In the study, each participant is visited intermittently sev-
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Table 3 Results on covariate selectionwith p = 10 and n = 300 based on nonhomogeneousMixed Poisson
process

Penalty TP FP MMSE SD TP FP MMSE SD
�0(t) = log(t + 1) + t1.5 �0(t) = t2

ρ = 0.2 BAR 2.95 0.18 0.051 0.092 2.98 0.14 0.056 0.072

LASSO 3.00 1.59 0.183 0.157 2.94 1.49 0.169 0.192

ALASSO 2.96 0.56 0.110 0.111 2.97 0.45 0.124 0.159

SCAD 2.91 0.14 0.042 0.107 2.83 0.08 0.048 0.203

SICA 2.92 0.15 0.043 0.108 2.91 0.09 0.053 0.123

SELO 2.93 0.15 0.044 0.102 2.93 0.08 0.050 0.107

MCP 2.92 0.16 0.045 0.106 2.90 0.12 0.053 0.133

ρ = 0.5 BAR 2.91 0.18 0.057 0.093 2.92 0.18 0.050 0.100

LASSO 3.00 1.71 0.162 0.135 3.00 1.33 0.169 0.108

ALASSO 2.95 0.47 0.131 0.124 2.90 0.41 0.148 0.165

SCAD 2.86 0.08 0.051 0.100 2.74 0.07 0.047 0.203

SICA 2.87 0.07 0.053 0.093 2.81 0.08 0.045 0.120

SELO 2.87 0.08 0.053 0.094 2.81 0.09 0.046 0.122

MCP 2.88 0.17 0.056 0.097 2.82 0.16 0.047 0.127

Table 4 Results on covariate selection for the number of different non-zero variables based on the setting
of ρ = 0.5, �0(t) = t2 and n = 500

Penalty TP FP MMSE SD TP FP MMSE SD
b ∼ N (0, 1) exp(b) ∼ �(2, 1/2)

Poisson process

p = 30, q = 5 BAR 4.94 0.21 0.099 0.091 5.00 0.26 0.083 0.060

LASSO 4.99 2.58 0.423 0.263 5.00 2.69 0.389 0.205

ALASSO 4.94 1.03 0.232 0.192 4.98 1.08 0.192 0.125

SCAD 4.90 0.20 0.081 0.106 4.97 0.21 0.061 0.068

SICA 4.85 0.24 0.087 0.115 4.97 0.23 0.062 0.073

SELO 4.86 0.19 0.087 0.111 4.97 0.29 0.066 0.076

MCP 4.89 0.19 0.082 0.107 4.98 0.33 0.064 0.081

p = 50, q = 8 BAR 7.90 0.31 0.195 0.123 7.97 0.44 0.185 0.091

LASSO 8.00 4.03 1.018 0.457 8.00 4.72 0.896 0.379

ALASSO 7.87 2.18 0.503 0.297 7.93 2.32 0.442 0.279

SCAD 7.81 0.19 0.168 0.123 7.92 0.16 0.116 0.095

SICA 7.61 0.37 0.240 0.155 7.86 0.31 0.134 0.105

SELO 7.61 0.33 0.230 0.157 7.86 0.44 0.142 0.109

MCP 7.72 0.28 0.202 0.136 7.90 0.39 0.137 0.103

Mixed Poisson process

p = 30, q = 5 BAR 4.95 0.22 0.102 0.076 4.99 0.34 0.093 0.077

LASSO 5.00 2.59 0.447 0.257 5.00 3.11 0.313 0.206

123



Variable selection in proportional odds model with...

Table 4 continued

Penalty TP FP MMSE SD TP FP MMSE SD
b ∼ N (0, 1) exp(b) ∼ �(2, 1/2)

ALASSO 4.95 1.08 0.234 0.155 4.97 1.17 0.165 0.133

SCAD 4.94 0.09 0.068 0.075 4.98 0.28 0.065 0.087

SICA 4.92 0.11 0.075 0.079 4.95 0.28 0.067 0.082

SELO 4.93 0.17 0.073 0.084 4.95 0.33 0.076 0.083

MCP 4.94 0.16 0.073 0.079 4.97 0.35 0.071 0.086

p = 50, q = 8 BAR 7.97 0.49 0.184 0.111 7.97 0.42 0.158 0.102

LASSO 8.00 5.02 1.017 0.435 8.00 4.46 0.828 0.402

ALASSO 7.94 2.34 0.502 0.284 7.94 2.12 0.423 0.264

SCAD 7.85 0.19 0.138 0.139 7.92 0.21 0.115 0.095

SICA 7.70 0.45 0.200 0.151 7.82 0.30 0.147 0.112

SELO 7.67 0.34 0.188 0.152 7.83 0.32 0.142 0.115

MCP 7.78 0.45 0.178 0.164 7.88 0.43 0.135 0.125

Table 5 Results on covariate selection with p = 10,�0(t) = t2 and n = 300

Penalty TP FP MMSE SD TP FP MMSE SD
b ∼ N (0, 1) exp(b) ∼ �(2, 1/2)

Poisson process

BAR 3.00 0.22 0.076 0.106 3.00 0.22 0.077 0.094

LASSO 3.00 1.82 0.304 0.230 3.00 1.95 0.267 0.161

ALASSO 3.00 0.33 0.151 0.149 3.00 0.31 0.125 0.115

SCAD 2.95 0.42 0.078 0.238 2.99 0.09 0.062 0.137

SICA 3.00 0.15 0.064 0.112 3.00 0.10 0.064 0.097

SELO 3.00 3.04 0.064 0.113 3.00 3.01 0.062 0.098

MCP 3.00 0.16 0.064 0.113 3.00 0.12 0.064 0.103

Mixed Poisson process

BAR 3.00 0.28 0.084 0.109 3.00 0.20 0.080 0.101

LASSO 3.00 1.92 0.317 0.211 3.00 2.39 0.218 0.180

ALASSO 3.00 0.33 0.163 0.157 3.00 0.30 0.131 0.124

SCAD 2.94 0.33 0.083 0.257 3.00 0.20 0.072 0.108

SICA 2.98 0.13 0.075 0.168 3.00 0.14 0.070 0.102

SELO 2.98 3.01 0.081 0.169 3.00 3.00 0.069 0.107

MCP 3.00 0.10 0.073 0.098 3.00 0.14 0.068 0.110

eral times, and all patients are grouped into three groups based on their cognitive
conditions, cognitively normal (CN), mild cognitive impairment (MCI) and AD. One
purpose of the study is to estimate the AD conversion time, which is usually used
to monitor the progress of participants and also to identify the risk factors for AD
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conversion time. One variable of interest is the time (in year) from the baseline visit
date to the AD conversion.

For the analysis, by following Li et al. (2017), we also focus on the data from 298
participants in the MCI group who had at least one follow-up and underwent 2421
examinations in total at randomobservation points for whom the complete information
on 23 demographic, clinical and genetic factors are available. These 23 demographic
and clinical covariates are identified as possible important factors associated with the
AD conversion by Li et al. (2017). In the application, let Ti denote the AD conversion
time for subject i . The observed information for each participant includes the number
of examinations or observation number Ki , the observation points Ui j and the AD
conversion indicators δi j . To identify the important covariates or risk factors that
have effects on the risk of developing AD and estimate their effects, we considered
proportional odds frailty model (1). And the cumulative baseline hazard function
corresponding to model (1) can then be denoted by

�(t | xi , bi ) = log[1 + �0(t) exp(x�
i βa + biβb)].

Table 6 presents the variable selection results for the ADNI data and it also gives the
estimated covariate effects along with the estimated standard errors in brackets based
on the bootstrap procedure, which are based on 100 bootstrap samples randomly
drawn with replacement from the data. In the simulation study, besides the BAR
penalty function, we also apply LASSO, ALASSO, SCAD, SICA, SELO and MCP
penalty functions to the real data set and present the obtained results in the table for
comparison. The results suggest that the AD conversion is clearly related to clinical
factors, includingAGE, APOES4, ADAS13, CDRSB, RAVLT_i, FAQ, Hippocampus,
Entorhinal,MidTemp and ICV.This performance is consistentwith using other penalty
functions except for variable ICV. And seven factors, PTGENDER, PTENDUCAT,
RAVLT_l, TRABSCOR, Ventricles, WholeBrain and Fusitorm, are not selected by
any penalty functions, thereby indicating that these seven factors had no relationship
on the hazards function of AD conversion time. In addition, the results suggest that
six factors, ADAS11, ADASQ4, MMSE, RAVLT_f, RAVLT_pf, DIGITSCOR, have
no relationship with or significant influence on the hazards function of AD conversion
time except using the LASSO- and ALASSO-based method.

Compared with the conclusions obtained by Li et al. (2017) based on the PHmodel,
although we obtain the similar important variables, the significance of the variables is
different. For instance, although the selected the AGE, APOES4, ADAS13, CDRSB,
Hippocampus, Entorhinal, and ICV as non-zero covariates, the estimation suggests
that it did not have any significant effect on the development of the AD conversion. In
addition, in the selected non-zero variables, FAQ has a significantly positive effect on
thehazards ofADconversion, suggesting that FAQincreases the risk ofADconversion.
Hence, maintaining a normal FAQ is beneficial to the prevention of AD conversion.
And RAVLT_i and MidTemp have significantly negative effects on the hazards of the
AD conversion, thereby indicating that maintaining a high level of fRAVLT_i and
MidTemp inhibits the development of the AD conversion. Moreover, we also obtain
effect β̂b = −0.610 of latent or frailty variable with the estimated standard error
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0.127. It seems to exist a strong correlation between the AD conversion time and the
observation process. In other words, the participant’s examination process seems to
be a negative association with the AD conversion time.

6 Discussion and concluding remarks

This paper discussed the variable or covariate selection problem for the informatively
case K interval-censored failure time data and a unified variable selection procedure
was proposed under the proportional odds model. Specifically, the proposed variable
selection was implemented by following a borrow strength idea. We first estimated
the frailty variables for the observation process model, and then proposed a unified
penalized variable selection procedure. The proposed method involves minimizing a
negative sieve log-likelihood function plus a broken adaptive ridge penalty to simul-
taneous estimation and covariate selection under the proportional odds model. The
major advantage of the proposed method is that it is for the general type of failure
time data, case K interval-censored data, which includes all of other types (interval-
censored data, current status data or right-censored data). Another advantage is that it
models the proportional oddsmodel for the dependent or informative censoring, which
often occurs in medical studies as well as other studies. In addition, like some existing
methods(SCAD, ALASSO, SICA), the oracle property of the proposed approach is
established and the numerical studies indicate that the proposed approach works well
for practical situations.

Some work remains to be done for further research. In the previous section, it is
assumed that the failure time of interest coming from the proportional odds model.
However, some other models such as the additive hazards model or the linear trans-
formation model may be more appropriate sometimes. An optimal penalty parameter
needs to be selected through the cross validation or the BIC criteria, but these imple-
mentation processes are very time-consuming. A variable selection procedure, which
overcomes the challenge of tuning parameter selection, is also an important direction
for future research. Although Wang et al. (2020a, b) proposed a novel approach to
tuning parameter selection of Lasso for the high-dimensional regression, however,
their method focused only on complete data and linear regression model, and is inap-
plicable to the semi- or non-parametric model for the censoring data. Constructing a
new variable selection procedure, which overcomes the challenge of tuning parameter
selection, is highly challenging and worthy of further investigation, in the presence of
informatively case K interval-censored failure time data.
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Appendix A Asymptotic properties of ˆ̌ ∗

In this Appendix, we will sketch the proof of the asymptotic properties of the proposed
BAR estimator β̂

∗
described in Theorem 1. For this, the required regularity conditions

are given as follows.
(C1) For the latent variable b, the variance of exp(b) is bound and there exists a

positive small constant ε > 0, such that exp(b) > ε almost surely.
(C2) For the follow-up time τ and latent variable b, (I) P(τ ≥ τ0, exp(b) > 0) > 0,

(II) the function Q(s) = E[exp(b)I (τ ≥ s)] is continuous for s ∈ [0, τ0].
(C3) (I) The matrix E(xx�) is non singular with x being bounded. That is, there

exists x0 > 0 such that P(||x || ≤ x0) = 1. (II) The set B is a compact of Rp+1 and
β0 is an interior point of B.

(C4) (I) For subject i , the union of the support of Ui, j is contained in the interval
[a∗, b∗], where 0 < a∗ < b∗ < ∞ and j = 1, . . . , Ki . (II) There exists a positive η∗
such that P((Ui, j − Ui, j−1) ≥ η∗) = 1 for subject i ,where j = 2, . . . , Ki .

(C5) The function λ0(.) is continuously differentiable up to order r in [u, v] and
a−1 < �0(u) < �0(v) < a for some positive constant a.

(C6) (I) There exists a compact neighborhood of B0 of the true value of β0 such
that

sup
β∈B0

∥

∥

∥n−1�n(β) − I (β0)

∥

∥

∥

as→ 0.

Where I (β0) is a positive definite (p + 1) × (p + 1) matrix, which is defined in
the Appendix. (II) There exists a constant c > 1 such that c−1 < λmin(n−1�n) ≤
λmax (n−1�n) < c for sufficiently large n, where λmin and λmax stand for the smallest
and largest eigenvalues of the matrix, respectively.

(C7) The exist positive constant a0 and a1 such that a0 ≤| β0,k |≤ a1, k =
1, 2, . . . , q.

(C8) As n → ∞, (p + 1)2q/
√

n → 0, λn/
√

n → 0, n/
√

n → 0,
λn

√
(q + 1)/n → 0 and λ2n/((p + 1)

√
n) → ∞.

It has been point out that if the conditions (C1)–(C3) hold, λ0h(t) and α are con-
sistent and asymptotic normal (Huang and Wang 2004). And latent variable b’s as
the functions of the above terms, Based on the delta method, one can easily shows
that as n → ∞, b’s are consistent and converge in distribution to a normal random
variable. Conditions (C3)–(C5) are necessary for the existence and consistence of the
sieve maximum likelihood estimator of �0(t) and usually satisfied in practice (Huang
and Rossini 1997). Conditions (C6) assume that n−1�n(β) is positive definite almost
surely and its eigenvalues are bounded away from zero and infinity. Condition (C7)
assumes that the nonzero coefficients are uniformly bounded away from zero and
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infinity, and condition (C8) gives some sufficient, but not necessary, conditions need
to prove the numerical convergence and asymptotic properties of the BAR estimator.

In the next, given b̂, we will sketch the proof of the asymptotic properties of the
proposed BAR estimator β̂

∗
. The following Lemmas are needed.

Lemma 1 Let the ridge estimator

βo = argmin
β

{

−2l p(β) + n

p
∑

s=1

β2
s

}

,

and suppose that the conditions (C1)–(C8) hold. Then we have that

||βo − β0|| = Op(
√

(p + 1)/n).

Proof of Lemma 1 Let

L(β) = 2l p(β) − n

p
∑

s=1

β2
s ,

and p(β0s) = β2
0sn/n, s = 1, 2, . . . , p, p + 1. The first and second derivation of

p(β0s) are ṗ(β0 s) = 2β0 sn/n and p̈(β0 s) = 2n/n, respectively.
Define

an = max{| ṗ(β0s) |: β0s �= 0, s = 1, 2, . . . , p + 1},
bn = max{| p̈(β0s) |: β0s �= 0, s = 1, 2, . . . , p + 1}.

According to Conditions (C7)–(C8), we obtain that an ≤ 2a1n/n = o(n−1/2), and
bn ≤ 2n/n = (n−1/2). Therefore, an → 0, bn → 0. Let ϕn = √

p + 1(n−1/2 + an),
then using the similar manipulation as those in Cai et al. (2005), we have prove that
for any ε > 0, there exists a large constant C0 such that

sup
||ν||=C0

{L(β + ϕnν) < L(β0)
} ≥ 1 − ε,

which implies that there exists a local maximiser βo with that ||βo − β0|| =
Op(

√
(p + 1)/n). We complete this proof. ��

To prove Theorem 1, we need to describe the following notations and Lemma 2
and 3. Define

(

ϑ1(β)

ϑ2(β)

)

≡ g(β) = (�n + λn D(β))−1ξn�n, (G1)
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where D(β) = diag(β1, . . . , βp−1, βp, 0),�n = �n(β) = Z�Z, and ξn = ξn(β) =
Z� y, and partition the matrix n−1�n into

(n−1�n)−1 =
(

A B
B� G

)

,

where A is a (q + 1) × (q + 1) matrix.
Note that since �n is nonsingular, it follows by multiplying �−1

n (�n + λn D(β))

and subtracting β0 on both sides of (G1) that we have

(

ϑ1(β) − β(01)
ϑ2(β)

)

+ λn

n

(

AD1(β1)ϑ1 BD2(β2)ϑ2

B�D1(β1)ϑ1 GD2(β2)ϑ2

)

= βo − β0, (G2)

where D1(β1) = diag(β−2
1 , . . . , β−2

q , 0), and D2(β2) = diag(β−2
q+1, . . . , β

−2
p ). In

the next, we will describe the following Lemma 2 and 3, and complete this proofs.

Lemma 2 Let {�n} be a sequence of positive real numbers,with that �n → ∞ and
�2

n(p + 1)/λn → 0. Let Hn ≡ {β = (β�
1 ,β�

2 )� : β1 ∈ [1/K0, K0]q+1, ||β2|| ≤
�n

√
(p + 1)/n}, where K0 > 1 is a constant such that β01 ∈ [1/K0, K0]q+1. Suppose

that the regular conditions (C1)–(C8) hold. Then, with probability tending to 1, we
have

(I) sup
β∈Hn

( ||ϑ2(β)||
||β2||

)

< 1
C0

for some constant C0 > 1.

(II) g(.) is a mapping from Hn to Hn. ��

Proof of Lemma 2 Let ϑ1 = ϑ1(β), ϑ2 = ϑ2(β). Based on the Lemma 1, it follows
from (G2) that

sup
β∈Hn

∥

∥

∥

∥

ϑ2 + λn

n
B�D1(β1)ϑ1 + λn

n
GD2(β2)ϑ2

∥

∥

∥

∥

= Op(
√

(p + 1)/n). (G3)

For given a constant C , and the matrix n−1�n has fact that

||B�B|| − ||A2|| ≤ ||B B� + A2|| ≤ ||(n−1�n(β))−2|| ≤ C2

by conditions (C6)(II) and (G2). Thus, we derive matrix B with that

||B|| ≤ √
2C . (G4)

Furthermore, note that β1 ∈ [1/Ko, K0]q+1 and ||ϑ1|| ≤ ||g(β)|| ≤ ||βo|| =
Op(

√
p + 1). Combining (G4), Condition (C6)(II) and (C7), we have

sup
β∈Hn

∥

∥

∥

∥

λn

n
B�D1(β1)ϑ1

∥

∥

∥

∥

= Op(
√

(p + 1)/n). (G5)
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Since λmin(G) > C−1, it follows from (G2) that with probability tending to 1,

C−1
∥

∥

∥

∥

λn

n
D2(β2)ϑ2

∥

∥

∥

∥

− ||ϑ2|| ≤ sup
β∈Hn

∥

∥

∥

∥

ϑ2 + λn

n
B�D1(β1)ϑ1

∥

∥

∥

∥

=Op(
√

(p + 1)/n) ≤ �n

√

(p + 1)/n.

(G6)

Let mϑ2 = ϑ2/β2. It then follows from the Cauchy–Schwarz inequality and the
assumption ||β2|| ≤ �n

√
(p + 1)/n that

||mϑ2 || ≤ ||D2(β2)ϑ2||�n

√

(p + 1)/n (G7)

and

||ϑ2|| = ||D2(β2)
−1/2mϑ2 || ≤ ||mϑ2 ||||β2|| ≤ ||mϑ2 ||�n

√

(p + 1)/n (G8)

for all large n.
Thus, from (G6) and (G8), we have the following inequality

λn

nC

√
n

�n
√

p + 1
||mϑ2 || − ||mϑ2 ||

�n
√

p + 1√
n

≤ �n
√

p + 1√
n

.

Immediately based on p�2
n/λn → 0, we can derive

||mϑ2 || ≤ 1
λn

(p+1)�2
nC

− 1
<

1

c0
, (c0 > 1), (G9)

with probability tending to 1. Hence, as n → ∞, it from (G8) and (G9) that

||ϑ2|| ≤ ||β2|| ≤ �n

√

(p + 1)/n → 0. (G10)

It implies that conclusion (I) of Lemma 2 holds.
Here, we prove conclusion (II) and need to verity that ϑ1 ∈ [1/K0, K0]q+1

with probability tending to 1, since (G10) has showed that ||ϑ1|| ≤ �n
√

(p + 1)/n
with probability tending to 1. Following arguments similar to those in the proof of
conclusion (I), based on the conditions C6(II), β1 ∈ [1/K0, K0]q+1 and ||ϑ2|| <

Op(
√

p + 1), we obtain

sup
β∈Hn

∥

∥

∥

∥

λn

n
AD1(β1)ϑ1

∥

∥

∥

∥

= op(
√

(p + 1)/n).

According to the formula (G2), we obtain

sup
β∈Hn

∥

∥

∥

∥

ϑ1 − β(01) + λn

n
BD2(β2)ϑ2

∥

∥

∥

∥

= Op(
√

(p + 1)/n) ≤ �n

√

(p + 1)/n.

(G11)
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And from (G6) and (G10), we have

∥

∥

∥

∥

λn

n
D2(β2)ϑ2

∥

∥

∥

∥

≤ 2c�n

√

(p + 1)/n. (G12)

Hence, according to condition (C6)(II), we have that as n → ∞ and with probability
tending to 1,

sup
β∈Hn

∥

∥

∥

∥

λn

n
BD2(β2)ϑ2

∥

∥

∥

∥

≤ λn

n
||B|| sup

β∈Hn

‖D2(β2)ϑ2‖ ≤ 2
√
2c2�n

√
p + 1√

n
. (G13)

Therefore, based on the above formula (G11) and (G13), we can obtain

sup
β∈Hn

‖ϑ1 − β(01)‖ ≤ (2
√
2c2 + 1)�n

√
p + 1√

n
→ 0

with probability tending to 1, which implies that P
(||ϑ1 − β(01)|| ≤ ε

) → 1, for any
ε > 0. Thus it follows from β(01) ∈ [1/K0, K0]q+1 that ϑ1 ∈ [1/K0, K0]q+1 holds
for large n, which implies that the conclusion (II) of Lemma 2 holds. This completes
the proof. ��
Lemma 3 Suppose that the regularity conditions (C1)–(C8) holds. Then, the equa-
tion ϑ∗

1 = (�
(1)
n + λn D1(ϑ

∗
1 ))−1ξ (1)

n has a unique fixed-point ϑ̂1 in the domain
[1/K0, K0]q+1 with probability tending to 1.

Proof of Lemma 3 Define Z1 is the first q +1 columns of matrix Z, measurement error
ε = y − Zβ, and

f (ϑ∗
1 ) = ( f1(ϑ

∗
1 ), . . . , fq(ϑ∗

1 ), fq+1(ϑ
∗
1 ))� ≡ (�(1)

n + λn D1(ϑ
∗
1 ))−1ξ (1)

n . (G14)

By multiply (�
(1)
n )−1(�

(1)
n +λn D1(ϑ

∗
1 )) and then minus β(01) on both sides of (G14),

we have

f (ϑ∗
1 ) − β(01) + λn(�

(1)
n )−1D1(ϑ

∗
1 ) f (ϑ∗

1 ) = (�
(1)
n )−1ξ

(1)
n − β(01) = (Z�

1 Z1)
−1Z�

1 ε,

(G15)

Therefore,

sup
ϑ∗
1∈[1/K0,K0]q+1

‖ f (ϑ∗
1 ) − β(01) + λn(�

(1)
n )−1D1(ϑ

∗
1 ) f (ϑ∗

1 )‖ = Op(
√

(q + 1)/n).

Following arguments similar to those in the proof of (G5), we can obtain

sup
ϑ∗
1∈[1/K0,K0]q+1

∥

∥

∥

∥

λn

n
(n−1�(1)

n )−1D1(ϑ
∗
1 ) f (ϑ∗

1 )

∥

∥

∥

∥

= op(
√

(q + 1)/n).
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Thus,

sup
ϑ∗
1∈[1/K0,K0]q+1

‖ f (ϑ∗
1 ) − β(01)‖ ≤ �nop(

√

(q + 1)/n) → 0, (G16)

which implies that f (ϑ∗
1 ) ∈ [1/K0, K0]q+1 with probability tending to 1. That is

f (ϑ∗
1 ) is a mapping from [1/K0, K0]q+1 to itself.

Let ϑ∗
1 = (ϑ∗

1,1, . . . , ϑ
∗
1,q , ϑ∗

1,q+1)
� and ḟ (ϑ∗

1 ) = ∂ f (ϑ∗
1 )

∂ϑ∗
1

. Similar to those in the

proof of (G15), by multiplying �
(1)
n + λn D1(ϑ

∗
1 ) and taking derivative with respect

to ϑ∗
1 on the both sides of (G14), we can obtain

n−1(�(1)
n + λn D1(ϑ

∗
1 )) ḟ (ϑ∗

1 ) + λn

n
diag

(

−2 f (ϑ∗
1 )

ϑ∗3
1,1

, . . . ,
−2 f (ϑ∗

1 )

ϑ∗3
1,q+1

)

= 0.

Then

sup
ϑ∗
1∈[1/K0,K)]q+1

‖n−1(�(1)
n + λn D1(ϑ

∗
1 )) ḟ (ϑ∗

1 )‖

= sup
ϑ∗
1∈[1/K0,K)]q+1

∥

∥

∥

∥

∥

2λn

n
diag

(

f (ϑ∗
1 )

ϑ∗3
1,1

, . . . ,
f (ϑ∗

1 )

ϑ∗3
1,q+1

)∥

∥

∥

∥

∥

= op(1).

According to condition (C8) and the fact ϑ∗
1 ∈ [1/K0, K0]q+1, we can obtain

‖n−1(�(1)
n + λn D1(ϑ

∗
1 )) ḟ (ϑ∗

1 )‖ ≥‖n−1�(1)
n ḟ (ϑ∗

1 )‖ − ‖n−1D1(ϑ
∗
1 ) ḟ (ϑ∗

1 )‖
≥
(

1

c
− λn

n
K 2
0

)

‖ ḟ (ϑ∗
1 )‖. (G17)

Thus, we have that sup
ϑ∗
1∈[1/K0,K0]q+1

‖ ḟ (ϑ∗
1 )‖ → 0, which implies that f (.) is a con-

traction mapping from [1/K0, K0]q+1 to itself with probability tending to 1. Hence,
according to the contraction mapping theorem, there exists one unique fixed-point
ϑ̂1 ∈ [1/K0, K0]q+1 such that

ϑ̂1 = (�(1)
n + λn D1(ϑ̂1))

−1ξ (1)
n .

We complete the proof of Lemma 3. ��
Proof of Theorem 1 Firstly, based on the definitions of β̂

∗
and β

(k)
2 , it follows from

Lemma 1 and 2 that

β̂
∗
2 ≡ lim

k→∞ β
(k)
2 = 0

holds, with the probability tending to 1. And the conclusion (I) holds.
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Secondly, to prove the conclusion (II), we need show that P(β̂
∗
1 = ϑ̂1) → 1. For

this consider (G2) and define ϑ2 = 0 if β2 = 0. Note that we obtain lim
β2→0

ϑ2 = 0

from the formula (G2) for fixed large n.
Furthermore, based on the formula (G15), we can obtain

lim
β2→0

ϑ1 = (�n + λn D1(β1))
−1ξ (1)

n = f (β1), (G18)

by multiplying (�n +λn D1(β)) on both sides of (G1). Combining conclusion (I) and
formula (G18), as k → ∞, it follows that

ψk ≡ sup
β∗
1∈[1/K0,K0]q+1

‖ f (β1) − ϑ1‖ → 0. (G19)

Since f (.) is a contract mapping, Lemma 3 yields

‖ f (β̂
(k)

1 ) − ϑ̂1‖ = ‖ f (β̂
(k)

1 ) − f (ϑ̂1)‖ ≤ 1

C
‖β̂(k)

1 − ϑ̂1‖, C > 1 (G20)

Let hk = ‖β̂(k)

1 − ϑ̂1‖. It then follows from (G19) and (G20) that

hk+1 = ‖ϑ1 − ϑ̂1‖ ≤ ‖ϑ1 − f (β̂
(k)

1 )‖ + ‖ f (β̂
(k)

1 ) − ϑ̂1‖ ≤ ψk + hk

C
. (G21)

From equation (G19), there exists constant N > 0 such that | ψk |< ε, k > N for
any ε ≥ 0. According to the above formula (G21), we have hk → 0 by using recursive

calculation, as k → ∞. Hence, we obtain ‖β̂(k)

1 − ϑ̂1‖ as k → ∞.

Since β̂
∗
1 ≡ lim

k→∞ β̂
(k)

1 , based on the Lemma 3, we have P(β̂
∗
1 = ϑ̂1) → 1, k → ∞.

And we complete this proof of the conclusion (II).
Finally, we will prove the conclusion (III). Define

�1 = √
n[(�(1)

n + λn D1(ϑ̂1))
−1�(1)

n − Iq+1]β(01)

and

�2 = √
n(�(1)

n + λn D1(ϑ̂1))
−1(ξ (1)

n − �(1)
n β(01)),

where Iq+1 denotes q + 1 dimensional identity matrix. According to the Lemma 3,
we have

√
n(ϑ̂1 − β(01)) = �1 + �2. Furthermore, It follows fromWoodbury matrix

identity and condition (C7)–(C8) that

�1 = λn√
n
(n−1�(1)

n )−1D1(ϑ̂1)(n
−1�(1)

n + n−1λn D1(ϑ̂1))
−1n−1�(1)

n β(01)

= Op(λn

√

(q + 1)/n) → 0

(G22)
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Under the assumption λn/
√

n of condition (C8), following arguments similar to those
in the proof of (G22),

�2 = √
n((n−1�(1)

n )−1 − op(1/
√

n))(n−1ξ (1)
n − n−1�(1)

n β(01))

= n−1�(1)
n )−1 1√

n
(ξ (1)

n − �(1)
n β(01)) + op(1)

(G23)

where n−1/2(ξ (1)
n −�

(1)
n β(01)) = n−1/2l̇(1)n (β̂

∗ | α̂)+op(1)with l̇(1)n (β̂
∗ | α̂) denoting

the first q + 1 components of l̇n(β̂
∗ | α̂). Let the Fisher information matrix I (β) =

−E(l̈n(β | α̂)) and I (1)(β0) denotes the leading (q + 1) × (q + 1) sub-matrix of
I (β0). The law of large numbers and the multivariate central limit theorem show that
n−1/2l̇n(β̂

∗ | α̂) → N (0, n−1 I (β0)), we have
√

n(ϑ̂1 − β(01)) → N (0, �) with

� = n(�
(1)
n (β0))

−1 I (1)(β0)(�
(1)
n (β0))

−1. This completes the proof of the Theorem
1. ��
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